Operations with Power Series

1. $f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}$
2. $f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{n N}$
3. $f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) x^{n}$

These operations can change the interval of convergence for the resulting series.
Recall that $\frac{a}{1-r}=\sum_{n=0}^{\infty} a r^{n}$ represents the sum of a convergent geometric series
where $|r|<1 . \quad-1<r<1$

1. Find a geometric power series for the function, centered at 0 .

$$
\begin{array}{r}
f(x)=\frac{6}{7-(x-0)} \\
\uparrow=0
\end{array}
$$

a. $f(x)=\frac{6 / 7}{\frac{7}{7}-\frac{x}{7}}$

$$
\left.f(x)=\frac{6 / 7}{1-\frac{x}{7}, \infty} \rightarrow \frac{I O C:}{\left|\frac{x}{7}\right|} \right\rvert\,<1 \rightarrow-1<\frac{x}{7}<1 \rightarrow-7<x<7
$$

So, $f(x)=\sum_{n=0}^{\infty} a r^{n}=\sum_{n=0}^{\infty} \frac{6}{7}\left(\frac{x}{7}\right)^{n},(-7,7)$

$$
\begin{aligned}
& \text { b. } f(x)=\frac{1}{1+x} \\
& (1+x) \frac{1-x+x^{2}-x^{3}}{1+0+0+0+0} \\
& \frac{-(1+x)}{\left.-x+0^{2}\right)} \\
& f(x)=\sum_{n=0}^{\infty}(-x)^{n},(-1,1) \quad \frac{-\left(-x-x^{2}\right)}{x^{2}}+0 \\
& \text { Ide: } \\
& |-x|<1 \rightarrow|x|<1 \rightarrow-1<x<1 \\
& f(x)=\frac{1-x+x^{2}-x^{3}+x^{4}-x^{5}+-\ldots}{\infty} \\
& \begin{array}{c}
x^{2}+0 \\
-\frac{\left(x^{2}+x^{3}\right)}{-x^{3}+0} \\
-\left(-x^{3}-x^{4}\right)
\end{array}
\end{aligned}
$$

2. Find a geometric power series for the function, centered at c, and determine the interval of convergence.
a. $f(x)=\frac{4}{5-x}, \quad c=-2$
$x-C \rightarrow$ centered at C $x-(-2) \rightarrow$ centered at -2

$$
\begin{aligned}
& f(x)=\frac{4}{(5+2)-(x-(-2))} \\
& f(x)=\frac{4 / 7}{\frac{7-(x+2)}{7}} \\
& f(x)=\frac{4 / 7}{1-\frac{x+2}{7}}
\end{aligned}
$$

$$
f(x)=\sum_{n=0}^{\infty} a r^{n}
$$

$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{4}{7}\right)\left(\frac{x+2}{7}\right)^{n},(-9,5)
$$

I.O.C:

$$
\left|\frac{x+2}{7}\right|<1 \rightarrow-1<\frac{x+2}{7}<1 \rightarrow-7<x+2<7 \rightarrow-9<x<5
$$

b. $f(x)=\frac{1}{2 x-5}, \quad c=2$

$$
\begin{aligned}
& f(x)=\frac{1}{-5-(-2 x)} \\
& f(x)=\frac{1}{(-5+4)-[-2(x-2)]}
\end{aligned}
$$

$$
f(x)=\sum_{n=0}^{\infty} a r^{n}
$$

$$
f(x)=\sum_{n=0}^{\infty}(-1)[2(x-2)]^{n},\left(\frac{3}{2}, \frac{5}{2}\right)
$$

$$
f(x)=\frac{1 /-1}{\frac{-1}{-1} \frac{[-2(x-2)]}{-1}}
$$

$$
f(x)=\frac{-1}{1-2(x-2)}
$$

INC:

$$
|2(x-2)|<1 \rightarrow-1<2(x-2)<1 \rightarrow-\frac{1}{2}<x-2<\frac{1}{2} \rightarrow \frac{3}{2}<x<\frac{5}{2}
$$

$$
\text { c. } f(x)=\frac{4}{4+x^{2}}, \quad c=0
$$

$$
f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n}\left(x^{n}\right)^{N}
$$

Consider $g(x)=\frac{4}{4+x}, c=0$
so $f(x)=g\left(x^{2}\right)$

$$
\begin{array}{ll}
g(x)=\frac{4}{4+x}, & c=0 \\
g(x)=\frac{4 / 4}{\frac{4}{4}-\left(-\frac{x}{4}\right)} & g(x)=\sum_{n=0}^{\infty}(1)\left(-\frac{x}{4}\right)^{n}
\end{array}
$$

$$
g(x)=\frac{1}{1-\left(-\frac{x}{4}\right)},(-4,4)
$$

$$
\frac{\text { IO: }}{\left|-\frac{x}{4}\right|<1 \rightarrow\left|\frac{x}{4}\right|<1 \rightarrow-4<x<4}
$$

3. Use the power series $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ to determine a power series, centered at 0 , for the function. Identify the interval of convergence.

$$
\begin{aligned}
& \text { a. } h(x)=\frac{x}{x^{2}-1}=\frac{1}{2(1-x)}+\frac{1}{2(1+x)} \\
& h(x)=\frac{1}{2}\left[\frac{1}{1-x}+\frac{1}{1+x}\right] \\
& h(x)=\frac{1}{2}\left[\sum_{n=0}^{\infty}\left(1 x^{n}+\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right]\right. \\
& h(x)=\frac{1}{2} \sum_{n=0}^{\infty}\left(1+(-1)^{n}\right) x^{n}=\frac{1}{2}\left(\left(1+(-1)^{0}\right) x^{0}+\left(1+(-1)^{1}\right) x^{1}+\left(1+(-1)^{2}\right) x^{2}\right. \\
& \left.\quad+\left(1+(-1)^{3}\right) x^{3}+\cdots\right) \\
& G=\frac{1}{2}\left[2 x^{0}+0 x^{1}+2 x^{2}+0 x^{3}+\cdots\right] \\
& =1+x^{2}+x^{4}+x^{6}+\cdots
\end{aligned}
$$

$$
h(x)=\sum_{n=0}^{\infty} x^{2 n},(-1,1)
$$

Theorem: Properties of functions defined by power series (from 9.8) If $f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ has a radius of convergence of $R>0$, then, on the interval $(c-R, c+R)$, f is differentiable (and therefore continuous). Moreover, the derivative and anfiderivative are as follows:

1) $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots$
2) $\int f(x) d x=C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1}=C+a_{0}(x-c)+a_{1} \frac{(x-c)^{2}}{2}+a_{2} \frac{(x-c)^{3}}{3}+\cdots$

$$
\begin{aligned}
& \text { b. } f(x)=\ln \left(1-x^{2}\right)=\int \frac{1}{1+x} d x-\int \frac{1}{1-x} d x \\
& f(x)=\int_{n=0}^{\infty}(-1)^{n} x^{n} d x-\int_{n=0}^{\infty} x^{n} d x \\
& f(x)=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}-\sum_{n=0}^{\infty}(1)^{n} \frac{x^{n+1}}{n+1} \\
& f(x)=C+\sum_{n=0}^{\infty}\left[(-1)^{n}-1\right] \frac{x^{n+1}}{n+1}=C+\frac{0 x^{1}}{1}-\frac{2 x^{2}}{2}+0 \frac{x^{3}}{3}-\frac{2 x^{4}}{4}+\cdots \\
& \rightarrow=C-x^{2}-\frac{x^{4}}{2}-\frac{x^{6}}{3}-\cdots=C-\sum_{n=1}^{\infty} \frac{x^{2 n}}{n},(-1,1)
\end{aligned}
$$

4. Use the power series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},|x|<1$ to determine a power series.

Identify the interval of convergence.

$$
f(x)=\frac{x}{(1-x)^{2}}=x\left[\frac{1}{(1-x)^{2}}\right]=x\left[\frac{d}{d x}\left(\frac{1}{1-x}\right)\right]
$$

$$
f(x)=+x \frac{d}{d x}\left(\frac{1}{1-x}\right)
$$

$$
f(x)=+x \frac{\frac{d}{d x} \sum_{n=0}^{\infty} x^{n}}{\infty-1}
$$

$$
f(x)=+x \sum_{\frac{n=1}{\infty} n x^{n-1}}^{n-1}
$$

$$
\begin{aligned}
& f(x)=+\sum_{n=1}^{\infty} x^{1} n x^{n-1} \\
& f(x)=+\sum_{n=1}^{\infty} n x^{n},(-1,1)
\end{aligned}
$$

